SPM1003

TECHNICAL DATA DATASHEET 5279, Rev. -

Three-Phase IGBT BRIDGE BRAKE IGBT + INRUSH SCR

DESCRIPTION:

- 1200 VOLT, 150 AMP, THREE PHASE IGBT BRIDGE AND BRAKE IGBT.
- NEAR HERMETIC PACKAGE.
- USE OF LATEST 4TH GENERATION IGBT AND DIODE TO MINIMIZE TOTAL LOSSES.
- 1200 VOLT, 133 AMP INRUSH THYRISTOR (SCR).
- AISIC BASE PLATE FOR HIGH TEMPERATURE CYCLE CAPABILITY.
- LOW PROFILE LIGHTWEIGHT PACKAGE.
- INTERNAL BUSBAR LAYOUT MINIMIZES INDUCTANCE.
- INTERNAL GATE SOURCE PROTECTION ZENERS

TECHNICAL DATA DATASHEET 5279, Rev. -

THREE PHASE AND BRAKE IGBT SECTION

ELECTRICAL CHARACTERISTICS PER IGBT DEVICE

(Tj=25 ⁰ C UNLESS OTHERWISE SPECIF	ED
---	----

PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT
INVERTER AND BRAKE IGBT SPECIFICATIONS		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
Collector to Emitter Breakdown Voltage	BV _{CES}	1200	-	-	V
$I_{C} = 4mA, V_{GE} = 0V$					
Gate Threshold Voltage	V _{GETH}	5.2	5.8	6.4	V
$I_{C} = 5.3 \text{mA}, V_{CE} = V_{GE}$					
Continuous Collector Current $T_{C} = 25 \ ^{\circ}C$	I _C	-	-	150	А
$T_{\rm C} = 80 {}^{\rm O}{\rm C}$				95	
Zero Gate Voltage Collector Current	I _{CES}	-	-		
$V_{CE} = 1200V, V_{GE} = 0V T_i = 25^{\circ}C$				1	mA
$V_{CE} = 800V, V_{GE} = 0V T_i = 125^{\circ}C$				25	mA
Collector to Emitter Saturation Voltage, $T_j = 25 {}^{O}C$	V _{CE(SAT)}	-	1.9	2.4	V
$I_{\rm C} = 150$ A, $V_{\rm GE} = 15$ V $T_{\rm j} = 125$ ^O C			2.2		
Gate to Emitter Leakage Current	I _{GES}			10	μA
V _{CE} = 0V, V _{GE} = 15V					
IGBT Internal Gate Resistance		-	5	-	Ohm
IGBT turn-on switching loss $V_{CE} = 600V$, $I_C = 150A$, $T_j = 25^{\circ}C$		-	5	-	mJ
IGBT turn-off switching loss $V_{CE} = 600V$, $I_C = 150A$, $T_j = 25^{\circ}C$		-	10	-	mJ
Short Circuit Withstand Time, Conditions 600V DC link, $1.5 \times 1.75 \circ$ C		-	10	-	μs
$v_{GE}=15v$, $v_{SC}=000A$, $v_{start} < 175$ C				0.04	°0111
Junction 10 Case Thermal Resistance	$R_{ ext{ heta}JC}$	-	-	0.24	-C/W
INVERTER DIODE SPECIFICATIONS					

INVERTER DIODE SPECIFICATIONS

Diode Peak Inverse Voltage	PIV	1200	-	-	V
Continuous Forward Current, $T_c = 80 {}^{\circ}C$	l _F	-	-	95	А
Diode Forward Voltage $I_F = 150A, T_j = 25 {}^{\circ}C$	V _F	-	1.8	2.2	V
Diode Peak Reverse Recovery Current I_F =150A, V_{RR} =600V, di/dt = 6000 A/µs, T_j = 25 ^o C	t _{rr}	-	220	-	A
Diode switching loss I _F =150A, V _{RR} =600V, di/dt = 6000 A/ μ s, T _j = 25 ^O C		-	7	-	mJ
Junction To Case Thermal Resistance	$R_{ ext{ heta}JC}$	-	-	0.42	°C/W

©2013 Sensitron Semiconductor • 221 West Industry Court 🗏 Deer Park, NY 11729 (631) 586 7600 FAX (631) 242 9798 • www.sensitron.com • sales@sensitron.com • Page 2

SPM1003

TECHNICAL DATA DATASHEET 5279, Rev. -

INRUSH THYRISTOR (SCR) SPECIFICATIONS

Peak Inverse Voltage	PIV	1200	-	-	V
Continuous Forward Current (I_{RMS}) $T_{C} = 80 °C$	I _T	-	-	133	А
Inrush Current, $T_j = 25 {}^{\circ}C$, $V_R = 0$, t = 8.3msec	I _{FSM}	-	-	2400	А
Forward Voltage, $T_j = 25$ ^O C, $I_{GT} = 150$ mA, $I_T = 300$ A pulse	V _{AK}	-	-	1.8	V
Latching Current, $T_c = 25 {}^{\circ}C$	۱L	-	-	450	mA
Holding Current, $T_c = 25 \ ^{\circ}C$	I _H	-	-	200	mA
Gate Trigger Current, $V_D = 6V$ $T_C = 25 \ ^{O}C$ $T_C = -55 \ ^{O}C$	I _{GT}	-	-	150 240	mA
Junction To Case Thermal Resistance	$R_{ ext{ heta}JC}$	-	-	0.27	°C/W
BRAKE DIODE SPECIFICATIONS	1		· · ·		
Diode Peak Inverse Voltage	PIV	1200	-	-	V
Continuous Forward Current, $T_c = 80$ ^o C	I _F	-	-	63	А
Diode Forward Voltage, $I_F = 100A$, $T_j = 25 °C$	V _F	-	-	1.3	V
Diode Leakage Current @ 1200V $T_{j} = 25 \ ^{o}C \\ T_{j} = 125 \ ^{o}C$	I _{RM}	-	-	0.05 2	mA
Junction To Case Thermal Resistance	$R_{ ext{ heta}JC}$	-	-	0.63	°C/W
MODULE TOTAL WEIGHT					
Total Weight	W	-	-	440	gms
MODULE STORAGE AND OPERATING CONDITION	IS				
Operating Junction Temperature	Tj	-55	-	150	°C
Storage Ambient Temperature	Ts	-55	-	150	°C
Operating Case Temperature	T _c	-55	-	125	°C
Operating Ambient Temperature	T _A	-40	-	100	°C
Operating Altitude		-	-	50000	ft.
MODULE ISOLATION					
All pins to baseplate (sea level)	-	2500	-	-	VDC

<u>SENSITRON</u> SEMICONDUCTOR

TECHNICAL DATA DATASHEET 5279, Rev. -

TECHNICAL DATA DATASHEET 5279, Rev. -

MECHANICAL OUTLINE

<u>SENSITRON</u> SEMICONDUCTOR

SPM1003

TECHNICAL DATA DATASHEET 5279, Rev. -

SCHEMATIC

All zener diodes are 18V.

DISCLAIMER:

1- The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact the Sensitron Semiconductor sales department for the latest version of the datasheet(s).

2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement.

3- In no event shall Sensitron Semiconductor be liable for any damages that may result from an accident or any other cause during operation of the user's units according to the datasheet(s). Sensitron Semiconductor assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.

4- In no event shall Sensitron Semiconductor be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.

5- No license is granted by the datasheet(s) under any patents or other rights of any third party or Sensitron Semiconductor.

6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed written permission of Sensitron Semiconductor.

7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.