1200 VOLT, 30 AMP MOSFET FULL-BRIDGE MODULE

Features

- Isolated base plate
- · Light weight low profile standard package
- Aluminum Nitride substrate
- High temperature engineering plastic shell construction
- Enhanced die coating
- Die back metal change from Silver to Gold

ELECTRICAL CHARACTERISTICS PER MOSFET LEG

(T_J=25°C UNLESS OTHERWISE SPECIFIED)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT	
MOSFET SPECIFICATIONS						
BV _{DSS}	Drain to Source Breakdown Voltage $I_D = 100 \mu A, V_{GS} = 0 V$	1200	-	-	V	
I _D	Continuous Drain Current $T_C = 25^{\circ}C$ $T_C = 100^{\circ}C$	-	-	36 27	А	
I _{D(pulse)}	Pulsed Drain Current, 1ms	-	-	80	Α	
V _{GS}	Gate to Source Voltage	-	-	-10/+25	V	
I _{GSS}	Gate-Source Leakage Current , V _{GS} = +20V / -5V	-	-	250	nA	
V _{GS(th)}		2.0 1.4	3.0 2.4	4.0 3.4	V	
I _{DSS}	Zero Gate Voltage Drain Current VDS = 1200 V, VGS=0V	-	-	100	μΑ	
R _{DS(on)}	Drain-Source On-State Resistance $T_J = 25^{\circ}\text{C}$ $I_D = 20\text{A}, V_{GS} = 20\text{V}$ $T_J = 150^{\circ}\text{C}$	-	85 164	105 201	mΩ	
C _{iss} C _{oss} C _{rss}	Input Capacitance Output Capacitance Reverse Transfer Cap. VDS = 1000 V, VGS = 0 V, f = 1 MHz, VAC = 25 mV	- - -	1130 92 7.5		pF	
$t_{D(on)}$ t_{R} $t_{D(off)}$ t_{F}	Turn On Delay Time Rise Time Turn Off Delay Time Fall Time $V_{DS} = 800 \text{ V}$, $V_{DS} = 20 \text{ A}$, $V_{GS} = -5/+20 \text{ V}$, $V_{GS} = 2.5 \Omega$, $V_{CS} = 40 \Omega$	- - - -	11 22 24 14	- - -	ns	
Eas	Avalanche Energy, Single Pulse I _D = 20A, V _{DS} = 50V	-	1	-	J	
E _{ON} E _{OFF}	Turn on Energy Loss Turn off Energy Loss (Including diode reverse recovery) $V_{DS} = 800 \text{ V}, I_D = 20A, V_{GS} = -5/+20V, R_G = 2.5\Omega, L = 156\mu\text{H}$	-	523 72	-	μJ	
R _{G(int)}	Internal Gate Resistance f = 1MHz, V _{AC} = 25mV	-	3.9	-	Ω	
Q _{GS} Q _{GD} Q _G	Gate to Source Charge Gate to Drain Charge Total Gate Charge VDS = 800 V, ID = 20A, VGS = -5/+20V	-	17 29 71	-	nC	

REVERSE DIODE CHARACTERISTICS

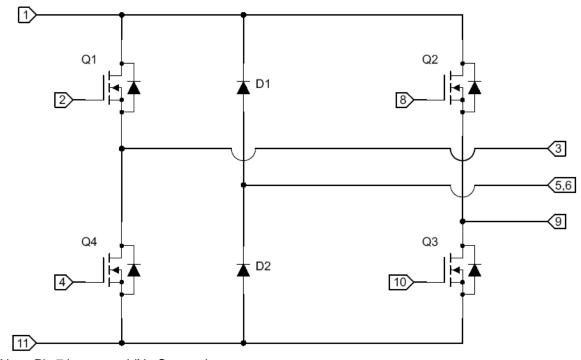
(T_J=25°C UNLESS OTHERWISE SPECIFIED)

112 12 110 2 2 10 2 2 1 1 1 1 1 1 1 1 1			(13-20 0 0112200 011121111102 01 2011 122)					
SYMBOL	PARAMETER		MIN	TYP	MAX	UNIT		
DIODE SPECIFICATIONS								
V _{SD}	Diode Forward Voltage V _{GS} = -5V, I _{SD} = 10A	T _J = 25°C T _J = 150°C	-	4.3 3.8	4.5 4.1	V		
ls	Continuous Forward Current,	T _J = 25°C	-	-	36	Α		
t _{rr}	Reverse Recovery Time V _{GS} = -5V, I _{SD} = 20A, V _R =800V, di/dt = 2400A/	μs	-	24	-	ns		
Qrr	Reverse Recovery Charge V _{GS} = -5V, I _{SD} = 20A, V _R =800V, di/dt = 2400A/	μs	-	152	-	nC		
I _{rrm}	Peak Reverse Recovery Current V _{GS} = -5V, I _{SD} = 20A, V _R =800V, di/dt = 2400A/	μs	-	10	-	Α		

ZVS SIC DIODE CHARACTERISTICS

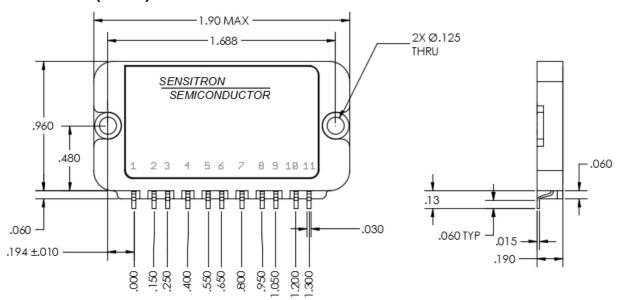
(TJ=25°C UNLESS OTHERWISE SPECIFIED)

ZVS SIC DIODE CHARACTERISTICS			(TJ=25°C UNLESS OTHERWISE SPECIFIED)			
SYMBOL	PARAMETER		MIN	TYP	MAX	UNIT
DIODE SP	ECIFICATIONS					
V_{RRM}	Repetitive Peak Reverse Voltage		1200	-	-	V
V _{RSM}	Surge Peak Reverse Voltage		1300	-	-	V
V _R	DC Peak Blocking Voltage		1200	-	-	V
l _F	Continuous Forward Current,	T _J = 150°C	-	-	2	Α
I _{FRM}	Repetitive Peak Forward Surge Current t _P = 10ms, Half Sine Pulse	$T_{C} = 25^{\circ}C$ $T_{C} = 110^{\circ}C$	-	-	13 8.4	Α
I _{FSM}	Non-Repetitive Forward Surge Current tp= 10ms, Half Sine Pulse	T _C = 25°C T _C = 110°C	-	-	19 16.5	Α
VF	Forward Voltage I _F = 2A	T _J = 25°C T _J = 150°C	-	1.4 1.9	1.8 3.0	V
I _R	Reverse Current V _R = 1200V	T _J = 25°C T _J = 150°C	-	10 40	50 150	μA
Qc	Total Capacitive Charge VR = 800V, IF = 2A, di/dt = 200A/µs, TJ = 25 °C		-	11	-	nC
С	Total Capacitance $V_R = 0V$, $T_J = 25$ °C, $f = 1MHz$ $V_R = 400V$, $T_J = 25$ °C, $f = 1MHz$ $V_R = 800V$, $T_J = 25$ °C, $f = 1MHz$		-	167 11 8	-	pF


Note: Production units are only tested at room temperature. Low/High temperature operation is guaranteed by design.

THERMAL AND MECHANICAL CHARACTERISTICS

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
R _{⊎ЈВ_М}	MOSFET Junction-to-Base Plate Thermal Resistance Per Leg	-	0.61	0.73	°C/W
$R_{\theta JB_D}$	Diode Junction-to-Base Plate Thermal Resistance Per Leg	-	2.90	3.20	°C/W
V _{iso}	Isolation to Base Plate	-	-	2500	VDC
TJ	Operating Junction Temperature	-55	-	150	°C
T _{STG}	Storage Temperature	-55	-	150	°C
	Mounting Torque for Module Mounting	3	-	4	in-lbs.
	Weight	-	10	-	g


Recommended TIM = Laird Tgon 805

Schematic Diagram:

Note: Pin 7 is not used (No Connect)

Mechanical Outline (inches):

TOLERANCE UNLESS OTHERWISE NOTED:

 $.XX = \pm .010$

 $.XXX = \pm .005$

DISCLAIMER:

- 1- The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact the Sensitron Semiconductor sales department for the latest version of the datasheet(s).
- 2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement.
- 3- In no event shall Sensitron Semiconductor be liable for any damages that may result from an accident or any other cause during operation of the user's units according to the datasheet(s). Sensitron Semiconductor assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.
- 4- In no event shall Sensitron Semiconductor be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- 5- No license is granted by the datasheet(s) under any patents or other rights of any third party or Sensitron Semiconductor.
- 6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed written permission of Sensitron Semiconductor.
- 7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.