MOS Gated Thyristor (1500V)

DESCRIPTION: A 1500 VOLT MOS GATED THYRISTOR IN A SURFACE MOUNT PACKAGE.

ELECTRICAL CHARACTERISTICS

ALL RATINGS ARE @ $T_C = 25$ °C UNLESS OTHERWISE SF

LECTRICAL CHARACTERISTICS	ALL RATINGS ARE @ 10 = 25 C UNLESS OTHERWI				SE SPECIFIED	
RATING	SYMBOL	Min	Typical	Max	Units	
PEAK INVERSE VOLTAGE, I _A = 250µA, V _{GK} = 0V (Blocking voltage)	Vak	-	-	1500	V	
Cathode Leakage Current V _{AK} =1500V, V _{GK} = 0V	l _D	-	15	50	μΑ	
Maximum DC Gate Voltage	V _{GK}	- 30	-	+ 30	V	
Gate Leakage Current, VAK=0V, VGK=+/- 30V		-	-	+/- 200	nA	
Gate Threshold Voltage VAK=VGK, IA = 250µA	V _{GK(TH)}	2.5	-	5.0	V	
Repetitive Peak Forward Anode Current (Pulse Width < 1 µs, Frequency < 10Hz) (Verified only for qualification)	IA	-	-	2500	А	
V_{GK} =15 V , I_A =350 A	V _T	-	5	-	V	
V _{GK} =15V, I _A >160A	ľΤ	-	1.8	-	mΩ	
Forward Voltage Drop V _{GK} =15V, I _A =350A Refer to Figs 1, 2, 3 (Device is on)	Vak	-	5.6	-	V	
Capacitive Discharge I _A = 2000A, V _{GK} =15V	tr	_	100	_	nsec	
R _G =1 ohm, V _{AK} =1000V, L < 20nH	t _d		50		nsec	
di/dt – refer to Appendix 1		-	45	-	kA/nsec	
MAXIMUM THERMAL RESISTANCE	Rejc					
Junction to Case (solder pads) (SHD763701)	1 1000	-	3.5	-	°C/W	
Junction to Case (solder pads) (SHD763701-1)			13			
MAXIMUM STORAGE TEMPERATURE RANGE	T _{stg}	-55		+ 150	°C	
MAXIMUM OPERATING TEMPERATURE RANGE	Top	-55		+ 100	°C	

MECHANICAL DIMENSIONS: in Inches

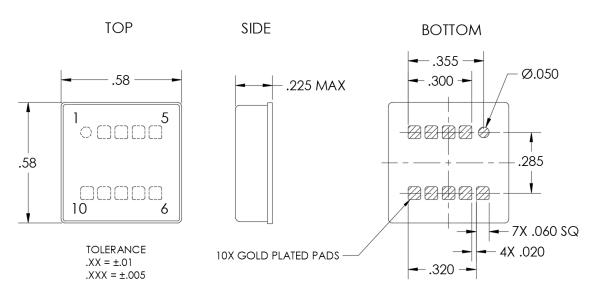


Fig 1: SHD763701 HERMETIC PACKAGE

Note: Underfill material is recommended to improve electrical and mechanical performance

MECHANICAL DIMENSIONS: in Inches

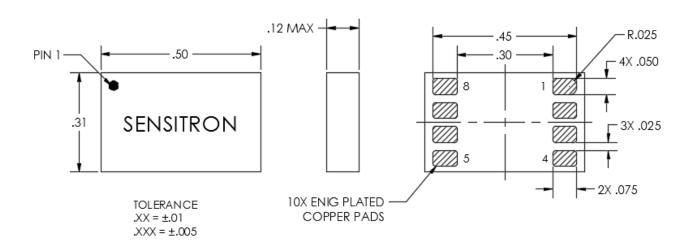
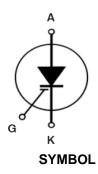



Fig 2: SHD763701-1 NON-HERMETIC PACKAGE

Note: Underfill material is recommended to improve electrical and mechanical performance

*Contact factory for leaded package options.

PINOUT TABLE

PART NUMBER	ANODE	CATHODE	GATE	GATE RETURN
SHD763701	Pins 6,7,8,9,10	Pins 3,4,5	Pin 1	Pin 2
SHD763701-1	Pins 5,6,7,8	Pins 3,4	Pin 1	Pin 2

Note: Do not connect Gate Return to Cathode on PCB.

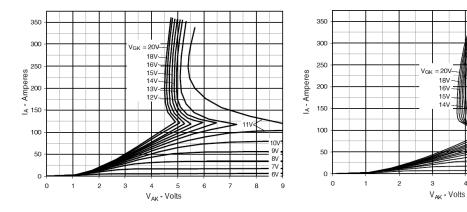


Fig 1: Extended Output Characteristics @ T_J = 25°C Fig 2: Extended Output Characteristics @ T_J = 100°C

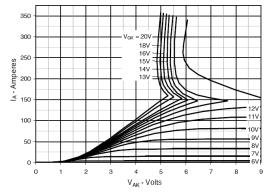
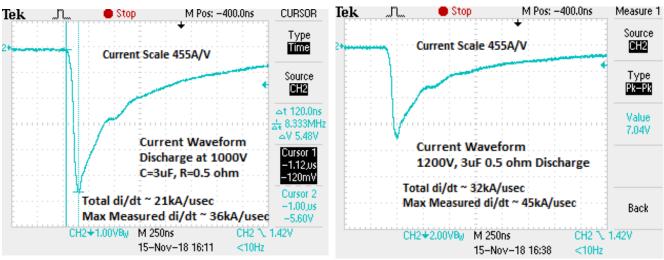



Fig 3:Extended Output Characteristics @ T_J = -40°C

Appendix 1: Test Data

Test Setup

- A ceramic capacitor is used as a capacitive storage. Total Capacitance 3.3uF. However, the total
 capacitance will drop down by about 50% when charged to 1200V. The effective discharge capacitance
 is ~1.6uF.
- The discharge current is limited by metal resistors with total value of 0.5 Ohms.
- The current is monitored across a sense resistor Rs of 2.2 mOhm.
- The tests show a peak current higher than the calculated value by about 20%. This is due to scope probe common mode noise.
- The current rise time is 120nsec with di/dt ~ 21kA/usec.
- The discharge test was done at bus voltage from 100V to 1200V.

Current Waveform at 1000V, & discharge resistance of 0.5 ohm Current Waveform at 1200V & discharge resistance of 0.5 ohm

DISCLAIMER:

- 1- The information given herein, including the specifications and dimensions, is subject to change without prior notice to improve product characteristics. Before ordering, purchasers are advised to contact the Sensitron Semiconductor sales department for the latest version of the datasheet(s).
- 2- In cases where extremely high reliability is required (such as use in nuclear power control, aerospace and aviation, traffic equipment, medical equipment, and safety equipment), safety should be ensured by using semiconductor devices that feature assured safety or by means of users' fail-safe precautions or other arrangement.
- 3- In no event shall Sensitron Semiconductor be liable for any damages that may result from an accident or any other cause during operation of the user's units according to the datasheet(s). Sensitron Semiconductor assumes no responsibility for any intellectual property claims or any other problems that may result from applications of information, products or circuits described in the datasheets.
- 4- In no event shall Sensitron Semiconductor be liable for any failure in a semiconductor device or any secondary damage resulting from use at a value exceeding the absolute maximum rating.
- 5- No license is granted by the datasheet(s) under any patents or other rights of any third party or Sensitron Semiconductor.
- 6- The datasheet(s) may not be reproduced or duplicated, in any form, in whole or part, without the expressed written permission of Sensitron Semiconductor.
- 7- The products (technologies) described in the datasheet(s) are not to be provided to any party whose purpose in their application will hinder maintenance of international peace and safety nor are they to be applied to that purpose by their direct purchasers or any third party. When exporting these products (technologies), the necessary procedures are to be taken in accordance with related laws and regulations.